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Non-sterile right-handed neutrinos?

Why should right-handed neutrinos be sterile
i.e. electroweak singlets? No evidence
whatsoever. What can we learn about
neutrino masses if they are not singlets?

If they are not sterile ⇒ A fertile land of
potential discoveries! PQH, Phys. Lett B649,
275 (2007), NP B 805, 326 (2008)...

For this, one needs to introduce the concept
of Mirror Fermions.

Bottom-up approach: Enlarge the SM one
step at a time and see what happens.
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Mirror fermions

Mirror: For every left-handed (right-handed)
SM fermion there is a corresponding
right-handed (left-handed) mirror fermion with
the same quantum numbers (but not
necessarily with a same mass).

Doublet:

lL =

(

νe

e

)

L

↔ lMR =

(

νM
R

eM
R

)

i

Singlet:
eR ↔ eM

L

Similarly for the quarks.
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Mirror fermions:Why?

Parity is intrinsically broken in the SM
because left-handed fermions are doublets
and right-handed fermions are singlets under
SU(2)L.

Parity can be restored at high energy above
the electroweak scale ΛEW ∼ 246 GeV either
by enlarging the SM gauge group to e.g.
SU(2)L × SU(2)R × U(1) or by introducing
mirror fermions.
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Mirror fermions:Why?

In Left-Right models, lL =

(

νe

e

)

L

∈ SU(2)L

and lR =

(

νe

e

)

R

∈ SU(2)R

With gL = gR and at E � MWR
� MWL

, the
V-A interactions (exchanges of WL) have
equal strengths as the V+A interactions
(exchanges of WR) ⇒ Parity is “restored” in
that sense.
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Mirror fermions:Why?

Mirror fermions are expected to have masses
not much greater than the electroweak scale.

At E � Mmirror, the W and Z bosons cannot
distinguish SM from mirror fermions ⇒
SU(2)L becomes “vector-like” ⇒ Parity is
“restored” in that sense.
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Mirror fermions:Why?

The SM as a quantum field theory needs to
be investigated both perturbatively (a lot has
been done here) and non-perturbatively (very
little). Why the latter?

The electroweak phase transition (from φ0 = 0

to φ0 = v/
√

2) is essentially a
non-perturbative phenomenon.

Non-perturbative instanton solution in the SM
at high temperature ⇒ baryon-number
violating sphaleron process. Very relevant to
the problem of the baryon asymmetry of the
universe!
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Mirror fermions:Why?

The appropriate framework to study
Nonperturbative phenomena such as the
electroweak phase transition (from φ0 = 0 to
φ0 = v/

√
2) and related physics (“sphaleron”,

etc...) is lattice regularization. Impossible to
put a chiral gauge theory such as
SU(2)L × U(1)Y on a lattice! A
gauge-invariant lattice formulation of the SM
is possible if one introduces mirror fermions
(Montvay, PLB 199, 89 (1987)).

...
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Mirror fermions:Why?

The SM, as a chiral theory, contains gauge
triangle anomalies which breaks gauge
invariance. Renormalizability of the SM ⇒
Cancellation of the triangle anomalies. Most
typically, one of such cancellations is
∑

i Qi = 0 for each family. For example:
−1 + 3 × (2/3 − 1/3) = 0.
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Mirror fermions:Why?

The SM augmented with mirror fermions is
automatically anomaly-free! Left cancels
right, no longer necessary between quarks
and leptons! Charge quantization: a signal of
quark-lepton unification?

Non-perturbatively, SU(2) chiral gauge
theories such as SU(2)L suffers the so-called
Witten anomaly: the theory is trivial unless
the number of doublets is even. SM: 4 per
family (one lepton and three color doublets);
SM with mirrors: Not a chiral gauge theory ⇒
No Witten anomaly.
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Mirror fermions → EW-scale νR

Can νM
R act as the missing right-handed

neutrino for the seesaw mechanism? If yes,
how does one write a Majorana mass term for
it?

lM,T
R σ2l

M
R ⇒ νM,T

R σ2 νM
R . Notice the

transformation under SU(2)L: 2 × 2 = 1 + 3,
singlet plus triplet and Y/2 = −1 ⇒ Higgs
(singlet or triplet) with Y/2 = 1.
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Mirror fermions → EW-scale νR

As in the 2nd lecture, a singlet Higgs for the
Majorana mass term is out because of its
non-zero vacuum expectation value would
break charge conservation ⇒ Triplet Higgs.
What kind?

χ̃ = 1√
2
~τ .~χ =

(

1√
2
χ+ χ++

χ0 − 1√
2
χ+

)

gM lM,T
R σ2 (iτ2 χ̃) lMR ⇒ gM(νM,T

R σ2 νM
R )χ0

〈χ0〉 = vM ⇒ Right-handed Majorana mass:
M = gMvM !

VSOP15, 20-31 July, 2009 – p. 12/23



Mirror fermions → EW-scale νR

As in the 2nd lecture, a singlet Higgs for the
Majorana mass term is out because of its
non-zero vacuum expectation value would
break charge conservation ⇒ Triplet Higgs.
What kind?

χ̃ = 1√
2
~τ .~χ =

(

1√
2
χ+ χ++

χ0 − 1√
2
χ+

)

gM lM,T
R σ2 (iτ2 χ̃) lMR ⇒ gM(νM,T

R σ2 νM
R )χ0

〈χ0〉 = vM ⇒ Right-handed Majorana mass:
M = gMvM !

VSOP15, 20-31 July, 2009 – p. 12/23



Mirror fermions → EW-scale νR

As in the 2nd lecture, a singlet Higgs for the
Majorana mass term is out because of its
non-zero vacuum expectation value would
break charge conservation ⇒ Triplet Higgs.
What kind?

χ̃ = 1√
2
~τ .~χ =

(

1√
2
χ+ χ++

χ0 − 1√
2
χ+

)

gM lM,T
R σ2 (iτ2 χ̃) lMR ⇒ gM(νM,T

R σ2 νM
R )χ0

〈χ0〉 = vM ⇒ Right-handed Majorana mass:
M = gMvM !

VSOP15, 20-31 July, 2009 – p. 12/23



Mirror fermions → EW-scale νR

How big can vM be? Since νM
R is a member of

a doublet, it interacts with the Z-boson (unlike
the singlet case). Value of Z-boson decay
width (no more than 3 light neutral fermions)
⇒ M > MZ/2 ∼ 46 GeV ⇒ vM > 46 GeV
assuming gM < 1.

vM breaks SU(2)L × U(1)Y ! It will destroy the
relationship MW = MZ cos θW (ρ = 1) unless
the VEV is very small! (2nd lecture!)
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Mirror fermions → EW-scale νR

One would have ρ 6= 1 when both a triplet and
a doublet are present with comparable VEV’s.
See the formula of the 2nd lecture.

What should we do next? What we need:
doublet Higgs for charged fermion
masses(quarks and leptons) and triplet Higgs
for right-handed Majorana neutrino mass.

Construct the Higgs potential for doublet and
triplet Higgses such that there remains a
Custodial global SU(2) symmetry after SSB
⇒ ρ = 1 at tree level!

VSOP15, 20-31 July, 2009 – p. 14/23



Mirror fermions → EW-scale νR

One would have ρ 6= 1 when both a triplet and
a doublet are present with comparable VEV’s.
See the formula of the 2nd lecture.

What should we do next? What we need:
doublet Higgs for charged fermion
masses(quarks and leptons) and triplet Higgs
for right-handed Majorana neutrino mass.

Construct the Higgs potential for doublet and
triplet Higgses such that there remains a
Custodial global SU(2) symmetry after SSB
⇒ ρ = 1 at tree level!

VSOP15, 20-31 July, 2009 – p. 14/23



Mirror fermions → EW-scale νR

One would have ρ 6= 1 when both a triplet and
a doublet are present with comparable VEV’s.
See the formula of the 2nd lecture.

What should we do next? What we need:
doublet Higgs for charged fermion
masses(quarks and leptons) and triplet Higgs
for right-handed Majorana neutrino mass.

Construct the Higgs potential for doublet and
triplet Higgses such that there remains a
Custodial global SU(2) symmetry after SSB
⇒ ρ = 1 at tree level!

VSOP15, 20-31 July, 2009 – p. 14/23



Mirror fermions → EW-scale νR

A nice way out (Chanowitz and Golden;
Georgi and Machacek):

Add ξ = (3, Y/2 = 0) and group it with

χ̃ = (3, Y/2 = 1) in χ =







χ0 ξ+ χ++

χ− ξ0 χ+

χ−− ξ− χ0∗







Notice the doublet Higgs can be written as

Φ =

(

φ0 −φ+

φ− φ0,∗

)
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Mirror fermions → EW-scale νR

Construct a Higgs potential with a global
SU(2)L × SU(2)R symmetry with the
transformations: UL,R = exp(−i~αL,R.~TL,R).

Φ = (2, 2) and χ = (3, 3).

Φ → ULΦU †
R, χ → UL χU †

R.
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Mirror fermions → EW-scale νR

SU(2)L × SU(2)R-invariant potential:
V (Φ, χ) = λ1(TrΦ†Φ − v2

2)
2 + λ2(Trχ†χ −

3v2
M)2 + λ3(TrΦ†Φ − v2

2 + Trχ†χ − 3v2
M )2 +

λ4(TrΦ†ΦTrχ†χ − 2TrΦ†T iΦT j.T rχ†T iχT j) +

λ5(3Trχ†χχ†χ − (Trχ†χ)2)

Proper vacuum alignment from λ4 term when
〈χ0〉 = 〈ξ0〉 = vM with 〈φ0〉 = v2√

2
.
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Mirror fermions → EW-scale νR

〈χ〉 =







vM 0 0

0 vM 0

0 0 vM






and 〈Φ〉 =

(

v2 0

0 v2

)

⇒ SU(2)L × SU(2)R → SU(2)custodial.

MW = 1

2
g v = MZ cos θW ⇒ ρ = 1! Here

v =
√

v2
2 + 8 v2

M ≈ 246 GeV

Right-handed neutrino masses: M = gM vM

⇒ MZ/2 ∼ 46 GeV < M < 246 GeV . “Narrow”
range!
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Mirror fermions: Dirac mass term

Mixing between SM and mirror leptons or
between νL and νM

R ⇒ Dirac neutrino mass.
How?

Simplest possibility: Singlet scalar φS

LS = gSl l
†
L φS lMR + g

′

Sl e
†
R φS eM

L + H.c. contains
gSl ν

†
L φS νM

R + H.c..

〈φS〉 = vS ⇒ Neutrino Dirac Mass mD = gSl vS

M ∼ O(ΛEW ∼ 246 GeV ), mν < 0.1 eV +
seesaw (|mν| = m2

D/M ) ⇒ mD < 105eV

VSOP15, 20-31 July, 2009 – p. 19/23



Mirror fermions: Dirac mass term

Mixing between SM and mirror leptons or
between νL and νM

R ⇒ Dirac neutrino mass.
How?

Simplest possibility: Singlet scalar φS

LS = gSl l
†
L φS lMR + g

′

Sl e
†
R φS eM

L + H.c. contains
gSl ν

†
L φS νM

R + H.c..

〈φS〉 = vS ⇒ Neutrino Dirac Mass mD = gSl vS

M ∼ O(ΛEW ∼ 246 GeV ), mν < 0.1 eV +
seesaw (|mν| = m2

D/M ) ⇒ mD < 105eV

VSOP15, 20-31 July, 2009 – p. 19/23



Mirror fermions: Dirac mass term

Mixing between SM and mirror leptons or
between νL and νM

R ⇒ Dirac neutrino mass.
How?

Simplest possibility: Singlet scalar φS

LS = gSl l
†
L φS lMR + g

′

Sl e
†
R φS eM

L + H.c. contains
gSl ν

†
L φS νM

R + H.c..

〈φS〉 = vS ⇒ Neutrino Dirac Mass mD = gSl vS

M ∼ O(ΛEW ∼ 246 GeV ), mν < 0.1 eV +
seesaw (|mν| = m2

D/M ) ⇒ mD < 105eV

VSOP15, 20-31 July, 2009 – p. 19/23



Mirror fermions: Dirac mass term

Mixing between SM and mirror leptons or
between νL and νM

R ⇒ Dirac neutrino mass.
How?

Simplest possibility: Singlet scalar φS

LS = gSl l
†
L φS lMR + g

′

Sl e
†
R φS eM

L + H.c. contains
gSl ν

†
L φS νM

R + H.c..

〈φS〉 = vS ⇒ Neutrino Dirac Mass mD = gSl vS

M ∼ O(ΛEW ∼ 246 GeV ), mν < 0.1 eV +
seesaw (|mν| = m2

D/M ) ⇒ mD < 105eV

VSOP15, 20-31 July, 2009 – p. 19/23



Mirror fermions: Dirac mass term

If gSl ∼ O(1) ⇒ vS ∼ O(100 keV ) ⇒ Very light
singlet scalar! (Dark Matter?) Of course, the
singlet scalar mass is ∼

√
λvS with λ being

the quartic coupling in the singlet potential
and can be either lighter or heavier than that
canonical value because λ is unknown and vS

can be different from O(100 keV ).

Cosmological consequences of
electroweak-scale right-handed neutrinos and
the singlet scalar field discussed in 4th
lecture.
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GUT vs Electroweak scale seesaw

GUT scale:
ΛEW ∼ 246 GeV ↔ MGUT ∼ 1016 GeV . 14
orders of magnitude difference in scales.
Only one is accessible experimentally.

Electroweak scale:
∼ 105 eV = 10−4 GeV ↔ ΛEW ∼ 246 GeV . 6
orders of magnitude difference in scales.
Both are accessible experimentally.
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Summary of results

The SM with mirror fermions can be treated
both perturbatively and nonperturbatively (on
the lattice consistent with gauge invariance).

Absence of perturbative and nonperturbative
anomalies!

Right-handed neutrinos which can participate
in the seesaw mechanism are active and light
with mass between 46 GeV and 246 GeV ⇒
Accessible experimentally! Interesting
signatures at the LHC (and the ILC).
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Summary of results

We do not have any clue about the
mechanism of spontaneous breakdown
(SSB) of the SM other than ρ ∼ 1!
Electroweak νR ↔ SSB of SM.

Rich Higgs structure: Doublet and Triplet
Higgses. Contains also doubly-charged
scalars.

Experimental implications in Lecture #4.
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